Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 52(10): 1648-1661, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030374

RESUMO

Anti-CD20 monoclonal antibodies such as Rituximab, Ofatumumab, and Obinutuzumab are widely used to treat lymphomas and autoimmune diseases. They act by depleting B cells, mainly through Fc-dependent effectors functions. Some patients develop resistance to treatment but the underlying mechanisms are poorly understood. Here, we performed a genome-wide CRISPR/Cas9 screen to identify genes regulating the efficacy of anti-CD20 antibodies. We used as a model the killing of RAJI B cells by Rituximab through complement-dependent-cytotoxicity (CDC). As expected, the screen identified MS4A1, encoding CD20, the target of Rituximab. Among other identified genes, the role of Interferon Regulatory Factor 8 (IRF8) was validated in two B-cell lines. IRF8 KO also decreased the efficacy of antibody-dependent cellular cytotoxicity and phagocytosis (ADCC and ADCP) induced by anti-CD20 antibodies. We further show that IRF8 is necessary for efficient CD20 transcription. Levels of IRF8 and CD20 RNA or proteins correlated in normal B cells and in hundreds of malignant B cells. Therefore, IRF8 regulates CD20 expression and controls the depleting capacity of anti-CD20 antibodies. Our results bring novel insights into the pathways underlying resistance to CD20-targeting immunotherapies.


Assuntos
Antígenos CD20 , Antineoplásicos , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , RNA , Rituximab/farmacologia , Rituximab/uso terapêutico
2.
Nat Med ; 28(6): 1297-1302, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322239

RESUMO

The severe acute respiratory syndrome coronavirus 2 Omicron BA.1 sublineage has been supplanted in many countries by the BA.2 sublineage. BA.2 differs from BA.1 by about 21 mutations in its spike. In this study, we first compared the sensitivity of BA.1 and BA.2 to neutralization by nine therapeutic monoclonal antibodies (mAbs). In contrast to BA.1, BA.2 was sensitive to cilgavimab, partly inhibited by imdevimab and resistant to adintrevimab and sotrovimab. We then analyzed sera from 29 immunocompromised individuals up to 1 month after administration of Ronapreve (casirivimab and imdevimab) and/or Evusheld (cilgavimab and tixagevimab) antibody cocktails. All treated individuals displayed elevated antibody levels in their sera, which efficiently neutralized the Delta variant. Sera from Ronapreve recipients did not neutralize BA.1 and weakly inhibited BA.2. Neutralization of BA.1 and BA.2 was detected in 19 and 29 out of 29 Evusheld recipients, respectively. As compared to the Delta variant, neutralizing titers were more markedly decreased against BA.1 (344-fold) than BA.2 (nine-fold). We further report four breakthrough Omicron infections among the 29 individuals, indicating that antibody treatment did not fully prevent infection. Collectively, BA.1 and BA.2 exhibit noticeable differences in their sensitivity to therapeutic mAbs. Anti-Omicron neutralizing activity of Ronapreve and, to a lesser extent, that of Evusheld is reduced in patients' sera.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais , Humanos , Glicoproteínas de Membrana/genética , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
3.
EBioMedicine ; 77: 103934, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35290827

RESUMO

BACKGROUND: SARS-CoV-2 lineages are continuously evolving. As of December 2021, the AY.4.2 Delta sub-lineage represented 20 % of sequenced strains in the UK and had been detected in dozens of countries. It has since then been supplanted by Omicron. The AY.4.2 spike displays three additional mutations (T95I, Y145H and A222V) in the N-terminal domain when compared to the original Delta variant (B.1.617.2) and remains poorly characterized. METHODS: We compared the Delta and the AY.4.2 spikes, by assessing their binding to antibodies and ACE2 and their fusogenicity. We studied the sensitivity of an authentic AY.4.2 viral isolate to neutralizing antibodies. FINDINGS: The AY.4.2 spike exhibited similar binding to all the antibodies and sera tested, and similar fusogenicity and binding to ACE2 than the ancestral Delta spike. The AY.4.2 virus was slightly less sensitive than Delta to neutralization by a panel of monoclonal antibodies; noticeably, the anti-RBD Imdevimab showed incomplete neutralization. Sensitivity of AY.4.2 to sera from vaccinated individuals was reduced by 1.3 to 3-fold, when compared to Delta. INTERPRETATION: Our results suggest that mutations in the NTD remotely impair the efficacy of anti-RBD antibodies. The spread of AY.4.2 was not due to major changes in spike fusogenicity or ACE2 binding, but more likely to a partially reduced neutralization sensitivity. FUNDING: The work was funded by Institut Pasteur, Fondation pour la Recherche Médicale, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, ANRS, the Vaccine Research Institute, Labex IBEID, ANR/FRM Flash Covid PROTEO-SARS-CoV-2 and IDISCOVR.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais Humanizados , Anticorpos Antivirais , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral
4.
Med ; 2(9): 1072-1092.e7, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34414385

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children is generally milder than in adults, but a proportion of cases result in hyperinflammatory conditions often including myocarditis. METHODS: To better understand these cases, we applied a multiparametric approach to the study of blood cells of 56 children hospitalized with suspicion of SARS-CoV-2 infection. Plasma cytokine and chemokine levels and blood cellular composition were measured, alongside gene expression at the bulk and single-cell levels. FINDINGS: The most severe forms of multisystem inflammatory syndrome in children (MIS-C) related to SARS-CoV-2 that resulted in myocarditis were characterized by elevated levels of pro-angiogenesis cytokines and several chemokines. Single-cell transcriptomics analyses identified a unique monocyte/dendritic cell gene signature that correlated with the occurrence of severe myocarditis characterized by sustained nuclear factor κB (NF-κB) activity and tumor necrosis factor alpha (TNF-α) signaling and associated with decreased gene expression of NF-κB inhibitors. We also found a weak response to type I and type II interferons, hyperinflammation, and response to oxidative stress related to increased HIF-1α and Vascular endothelial growth factor (VEGF) signaling. CONCLUSIONS: These results provide potential for a better understanding of disease pathophysiology. FUNDING: Agence National de la Recherche (Institut Hospitalo-Universitaire Imagine, grant ANR-10-IAHU-01; Recherche Hospitalo-Universitaire, grant ANR-18-RHUS-0010; Laboratoire d'Excellence ''Milieu Intérieur," grant ANR-10-LABX-69-01; ANR-flash Covid19 "AIROCovid" and "CoVarImm"), Institut National de la Santé et de la Recherche Médicale (INSERM), and the "URGENCE COVID-19" fundraising campaign of Institut Pasteur.


Assuntos
COVID-19 , Miocardite , Adulto , COVID-19/complicações , Quimiocinas , Criança , Citocinas , Células Dendríticas , Humanos , Monócitos , NF-kappa B , SARS-CoV-2/genética , Síndrome de Resposta Inflamatória Sistêmica , Fator A de Crescimento do Endotélio Vascular
5.
PLoS Pathog ; 17(4): e1009526, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872329

RESUMO

HIV-1 infects CD4 T lymphocytes (CD4TL) through binding the chemokine receptors CCR5 or CXCR4. CXCR4-using viruses are considered more pathogenic, linked to accelerated depletion of CD4TL and progression to AIDS. However, counterexamples to this paradigm are common, suggesting heterogeneity in the virulence of CXCR4-using viruses. Here, we investigated the role of the CXCR4 chemokine CXCL12 as a driving force behind virus virulence. In vitro, CXCL12 prevents HIV-1 from binding CXCR4 and entering CD4TL, but its role in HIV-1 transmission and propagation remains speculative. Through analysis of thirty envelope glycoproteins (Envs) from patients at different stages of infection, mostly treatment-naïve, we first interrogated whether sensitivity of viruses to inhibition by CXCL12 varies over time in infection. Results show that Envs resistant (RES) to CXCL12 are frequent in patients experiencing low CD4TL levels, most often late in infection, only rarely at the time of primary infection. Sensitivity assays to soluble CD4 or broadly neutralizing antibodies further showed that RES Envs adopt a more closed conformation with distinct antigenicity, compared to CXCL12-sensitive (SENS) Envs. At the level of the host cell, our results suggest that resistance is not due to improved fusion or binding to CD4, but owes to viruses using particular CXCR4 molecules weakly accessible to CXCL12. We finally asked whether the low CD4TL levels in patients are related to increased pathogenicity of RES viruses. Resistance actually provides viruses with an enhanced capacity to enter naive CD4TL when surrounded by CXCL12, which mirrors their situation in lymphoid organs, and to deplete bystander activated effector memory cells. Therefore, RES viruses seem more likely to deregulate CD4TL homeostasis. This work improves our understanding of the pathophysiology and the transmission of HIV-1 and suggests that RES viruses' receptors could represent new therapeutic targets to help prevent CD4TL depletion in HIV+ patients on cART.


Assuntos
Antivirais/metabolismo , Quimiocina CXCL12/metabolismo , Infecções por HIV/virologia , HIV-1/patogenicidade , Receptores CXCR4/metabolismo , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/fisiopatologia , Infecções por HIV/transmissão , HIV-1/fisiologia , Homeostase , Humanos , Proteínas do Envelope Viral/metabolismo , Virulência
6.
Cell Host Microbe ; 29(2): 236-249.e6, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33357418

RESUMO

To develop a vaccine candidate against coronavirus disease 2019 (COVID-19), we generated a lentiviral vector (LV) eliciting neutralizing antibodies against the Spike glycoprotein of SARS-CoV-2. Systemic vaccination by this vector in mice, in which the expression of the SARS-CoV-2 receptor hACE2 has been induced by transduction of respiratory tract cells by an adenoviral vector, confers only partial protection despite high levels of serum neutralizing activity. However, eliciting an immune response in the respiratory tract through an intranasal boost results in a >3 log10 decrease in the lung viral loads and reduces local inflammation. Moreover, both integrative and non-integrative LV platforms display strong vaccine efficacy and inhibit lung deleterious injury in golden hamsters, which are naturally permissive to SARS-CoV-2 replication and closely mirror human COVID-19 physiopathology. Our results provide evidence of marked prophylactic effects of LV-based vaccination against SARS-CoV-2 and designate intranasal immunization as a powerful approach against COVID-19.


Assuntos
Administração Intranasal/métodos , Vacinas contra COVID-19/administração & dosagem , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Cricetinae , Feminino , Vetores Genéticos , Imunidade nas Mucosas , Imunização Secundária , Imunoglobulina A/imunologia , Lentivirus/genética , Lentivirus/imunologia , Masculino , Camundongos , Modelos Animais , Sistema Respiratório/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral
7.
PLoS Pathog ; 16(11): e1009025, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253297

RESUMO

The development of HIV-1 vaccines is challenged by the lack of relevant models to accurately induce human B- and T-cell responses in lymphoid organs. In humanized mice reconstituted with human hematopoietic stem cells (hu-mice), human B cell-development and function are impaired and cells fail to efficiently transition from IgM B cells to IgG B cells. Here, we found that CD40-targeted vaccination combined with CpG-B adjuvant overcomes the usual defect of human B-cell switch and maturation in hu-mice. We further dissected hu-B cell responses directed against the HIV-1 Env protein elicited by targeting Env gp140 clade C to the CD40 receptor of antigen-presenting cells. The anti-CD40.Env gp140 vaccine was injected with CpG-B in a homologous prime/boost regimen or as a boost of a NYVAC-KC pox vector encoding Env gp140 clade C. Both regimens elicited Env-specific IgG-switched memory hu-B cells at a greater magnitude in hu-mice primed with NYVAC-KC. Single-cell RNA-seq analysis showed gp140-specific hu-B cells to express polyclonal IgG1 and IgG3 isotypes and a broad Ig VH/VL repertoire, with predominant VH3 family gene usage. These cells exhibited a higher rate of somatic hypermutation than the non-specific IgG+ hu-B-cell counterpart. Both vaccine regimens induced splenic GC-like structures containing hu-B and hu-Tfh-like cells expressing PD-1 and BCL-6. We confirmed in this model that circulating ICOS+ memory hu-Tfh cells correlated with the magnitude of gp140-specific B-cell responses. Finally, the NYVAC-KC heterologous prime led to a more diverse clonal expansion of specific hu-B cells. Thus, this study shows that CD40-targeted vaccination induces human IgG production in hu-mice and provides insights for the development of a CD40-targeting vaccine to prevent HIV-1 infection in humans.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos CD40/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Receptor Toll-Like 9/agonistas , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Células-Tronco Hematopoéticas , Humanos , Imunoglobulina G/imunologia , Camundongos , Linfócitos T/imunologia , Vacinação , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
8.
EMBO J ; 39(23): e106267, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33051876

RESUMO

Severe cases of COVID-19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS-CoV-2-infected cells express the Spike protein (S) at their surface and fuse with ACE2-positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon-induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S-mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell-free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS-CoV-2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation.


Assuntos
COVID-19/patologia , Células Gigantes/virologia , Interações Hospedeiro-Patógeno , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Fusão Celular , Linhagem Celular , Chlorocebus aethiops , Células Gigantes/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero/virologia
9.
Science ; 369(6505): 793-799, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32792392

RESUMO

Monoclonal antibodies (mAbs) targeting human antigen CD20 (cluster of differentiation 20) constitute important immunotherapies for the treatment of B cell malignancies and autoimmune diseases. Type I and II therapeutic mAbs differ in B cell binding properties and cytotoxic effects, reflecting differential interaction mechanisms with CD20. Here we present 3.7- to 4.7-angstrom cryo-electron microscopy structures of full-length CD20 in complexes with prototypical type I rituximab and ofatumumab and type II obinutuzumab. The structures and binding thermodynamics demonstrate that upon binding to CD20, type II mAbs form terminal complexes that preclude recruitment of additional mAbs and complement components, whereas type I complexes act as molecular seeds to increase mAb local concentration for efficient complement activation. Among type I mAbs, ofatumumab complexes display optimal geometry for complement recruitment. The uncovered mechanisms should aid rational design of next-generation immunotherapies targeting CD20.


Assuntos
Anticorpos Monoclonais Humanizados/química , Complexo Antígeno-Anticorpo/química , Antígenos CD20/química , Antineoplásicos/química , Imunoterapia , Linfoma de Células B/terapia , Rituximab/química , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Complexo Antígeno-Anticorpo/imunologia , Antígenos CD20/imunologia , Antineoplásicos/imunologia , Linfócitos B/imunologia , Ativação do Complemento , Microscopia Crioeletrônica , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Ligação Proteica , Conformação Proteica , Rituximab/imunologia , Rituximab/uso terapêutico
10.
J Hepatol ; 71(5): 908-919, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31279905

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection contributes to the development of autoimmune disorders such as cryoglobulinaemia vasculitis (CV). However, it remains unclear why only some individuals with HCV develop HCV-associated CV (HCV-CV). HCV-CV is characterized by the expansion of anergic CD19+CD27+CD21low/- atypical memory B cells (AtMs). Herein, we report the mechanisms by which AtMs participate in HCV-associated autoimmunity. METHODS: The phenotype and function of peripheral AtMs were studied by multicolour flow cytometry and co-culture assays with effector T cells and regulatory T cells in 20 patients with HCV-CV, 10 chronicallyHCV-infected patients without CV and 8 healthy donors. We performed gene expression profile analysis of AtMs stimulated or not by TLR9. Immunoglobulin gene repertoire and antibody reactivity profiles of AtM-expressing IgM antibodies were analysed following single B cell FACS sorting and expression-cloning of monoclonal antibodies. RESULTS: The Tbet+CD11c+CD27+CD21- AtM population is expanded in patients with HCV-CV compared to HCV controls without CV. TLR9 activation of AtMs induces a specific transcriptional signature centred on TNFα overexpression, and an enhanced secretion of TNFα and rheumatoid factor-type IgMs in patients with HCV-CV. AtMs stimulated through TLR9 promote type 1 effector T cell activation and reduce the proliferation of CD4+CD25hiCD127-/lowFoxP3+ regulatory T cells. AtM expansions display intraclonal diversity with immunoglobulin features of antigen-driven maturation. AtM-derived IgM monoclonal antibodies do not react against ubiquitous autoantigens or HCV antigens including NS3 and E2 proteins. Rather, AtM-derived antibodies possess rheumatoid factor activity and target unique epitopes on the human IgG-Fc region. CONCLUSION: Our data strongly suggest a central role for TLR9 activation of AtMs in driving HCV-CV autoimmunity through rheumatoid factor production and type 1 T cell responses. LAY SUMMARY: B cells are best known for their capacity to produce antibodies, which often play a deleterious role in the development of autoimmune diseases. During chronic hepatitis C, self-reactive B cells proliferate and can be responsible for autoimmune symptoms (arthritis, purpura, neuropathy, renal disease) and/or lymphoma. Direct-acting antiviral therapy clears the hepatitis C virus and eliminates deleterious B cells.


Assuntos
Autoanticorpos/imunologia , Linfócitos B/imunologia , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Memória Imunológica , Fator Reumatoide/imunologia , Células Th1/imunologia , Receptor Toll-Like 9/metabolismo , Autoimunidade , Células Cultivadas , Crioglobulinemia/etiologia , Crioglobulinemia/imunologia , Feminino , Hepatite C Crônica/complicações , Hepatite C Crônica/virologia , Humanos , Imunoglobulina M/imunologia , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Receptores de Complemento 3d/metabolismo , Transdução de Sinais/imunologia , Transcriptoma , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
11.
Curr Opin HIV AIDS ; 13(2): 143-151, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29194124

RESUMO

PURPOSE OF REVIEW: Immunodeficient mice that lack all lymphocyte subsets and have phagocytic cells that are tolerant of human cells can be stably xenografted with human hematopoietic stem cell as well as other human tissues (fetal liver and thymus) creating 'human immune system' (HIS) mice. HIS mice develop all major human lymphocyte classes (B, T, natural killer, and innate lymphoid cell) and their specialized subsets as well as a variety of myeloid cells (dendritic cell, monocytes, and macrophages) thereby providing a small animal model in which to interrogate human immune responses to infection. RECENT FINDINGS: HIS mouse models have been successfully used to study several aspects of HIV-1 biology, including viral life cycle (entry, restriction, replication, and spread) as well as virus-induced immunopathology (CD4 T-cell depletion, immune activation, and mucosal inflammation). Recent work has shown that HIV reservoirs can be established in HIV-infected HIS mice after treatment with combinations of antiretroviral drugs thereby providing a model to test new approaches to eliminate latently infected cells. SUMMARY: HIS mice provide cost-effective preclinical platform to assess combination immunotherapies that can target HIV reservoirs. Therapeutic strategies validated in HIS mice should be considered in designing the roadmap toward HIV 'cure'.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Modelos Animais de Doenças , Infecções por HIV/tratamento farmacológico , Infecções por HIV/fisiopatologia , HIV/fisiologia , Animais , HIV/efeitos dos fármacos , Infecções por HIV/virologia , Humanos , Camundongos
13.
Nature ; 519(7541): 87-91, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25707797

RESUMO

Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs). However, even the best bNAbs neutralize 10-50% of HIV-1 isolates inefficiently (80% inhibitory concentration (IC80) > 5 µg ml(-1)), suggesting that high concentrations of these antibodies would be necessary to achieve general protection. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean half-maximum inhibitory concentration (IC50) < 0.05 µg ml(-1)). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2 and simian immunodeficiency virus isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46 and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17-77 µg ml(-1) of fully functional rhesus eCD4-Ig for more than 40 weeks, and these macaques were protected from several infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well-characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine.


Assuntos
Antígenos CD4/imunologia , Dependovirus/genética , Imunoglobulinas/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Internalização do Vírus , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Antagonistas dos Receptores CCR5/imunologia , Antígenos CD4/genética , Feminino , Terapia Genética , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , HIV-2/imunologia , Imunoglobulinas/genética , Macaca mulatta , Masculino , Testes de Neutralização , Receptores CCR5/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
14.
J Exp Med ; 211(10): 2061-74, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25155019

RESUMO

It is widely appreciated that effective human vaccines directed against viral pathogens elicit neutralizing antibodies (NAbs). The passive transfer of anti-HIV-1 NAbs conferring sterilizing immunity to macaques has been used to determine the plasma neutralization titers, which must be present at the time of exposure, to prevent acquisition of SIV/HIV chimeric virus (SHIV) infections. We administered five recently isolated potent and broadly acting anti-HIV neutralizing monoclonal antibodies (mAbs) to rhesus macaques and challenged them intrarectally 24 h later with either of two different R5-tropic SHIVs. By combining the results obtained from 60 challenged animals, we determined that the protective neutralization titer in plasma preventing virus infection in 50% of the exposed monkeys was relatively modest (∼1:100) and potentially achievable by vaccination.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV/imunologia , Infecções por Lentivirus/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Primers do DNA/genética , Anticorpos Anti-HIV/administração & dosagem , Humanos , Macaca mulatta , Mutagênese , Testes de Neutralização , Análise de Regressão , Vacinação/métodos
15.
J Exp Med ; 210(13): 2813-21, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24277152

RESUMO

The neutralizing activity of anti-HIV-1 antibodies is typically measured in assays where cell-free virions enter reporter cell lines. However, HIV-1 cell to cell transmission is a major mechanism of viral spread, and the effect of the recently described broadly neutralizing antibodies (bNAbs) on this mode of transmission remains unknown. Here we identify a subset of bNAbs that inhibit both cell-free and cell-mediated infection in primary CD4(+) lymphocytes. These antibodies target either the CD4-binding site (NIH45-46 and 3BNC60) or the glycan/V3 loop (10-1074 and PGT121) on HIV-1 gp120 and act at low concentrations by inhibiting multiple steps of viral cell to cell transmission. These antibodies accumulate at virological synapses and impair the clustering and fusion of infected and target cells and the transfer of viral material to uninfected T cells. In addition, they block viral cell to cell transmission to plasmacytoid DCs and thereby interfere with type-I IFN production. Thus, only a subset of bNAbs can efficiently prevent HIV-1 cell to cell transmission, and this property should be considered an important characteristic defining antibody potency for therapeutic or prophylactic antiviral strategies.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Técnicas de Cocultura , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células HEK293 , Células HeLa , Humanos , Concentração Inibidora 50 , Microscopia de Fluorescência , Fatores de Tempo , Vírion/fisiologia
16.
Science ; 341(6151): 1199-204, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24031012

RESUMO

Despite 30 years of study, there is no HIV-1 vaccine and, until recently, there was little hope for a protective immunization. Renewed optimism in this area of research comes in part from the results of a recent vaccine trial and the use of single-cell antibody-cloning techniques that uncovered naturally arising, broad and potent HIV-1-neutralizing antibodies (bNAbs). These antibodies can protect against infection and suppress established HIV-1 infection in animal models. The finding that these antibodies develop in a fraction of infected individuals supports the idea that new approaches to vaccination might be developed by adapting the natural immune strategies or by structure-based immunogen design. Moreover, the success of passive immunotherapy in small-animal models suggests that bNAbs may become a valuable addition to the armamentarium of drugs that work against HIV-1.


Assuntos
Vacinas contra a AIDS/uso terapêutico , Síndrome da Imunodeficiência Adquirida/terapia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/terapia , HIV-1/imunologia , Síndrome da Imunodeficiência Adquirida/prevenção & controle , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/genética , Anticorpos Anti-HIV/biossíntese , Anticorpos Anti-HIV/genética , Humanos , Imunoterapia , Proteínas do Envelope Viral/imunologia
17.
Proc Natl Acad Sci U S A ; 110(41): 16538-43, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24043801

RESUMO

Effective control of HIV-1 infection in humans is achieved using combinations of antiretroviral therapy (ART) drugs. In humanized mice (hu-mice), control of viremia can be achieved using either ART or by immunotherapy using combinations of broadly neutralizing antibodies (bNAbs). Here we show that treatment of HIV-1-infected hu-mice with a combination of three highly potent bNAbs not only resulted in complete viremic control but also led to a reduction in cell-associated HIV-1 DNA. Moreover, lowering the initial viral load by coadministration of ART and immunotherapy enabled prolonged viremic control by a single bNAb after ART was withdrawn. Similarly, a single injection of adeno-associated virus directing expression of one bNAb produced durable viremic control after ART was terminated. We conclude that immunotherapy reduces plasma viral load and cell-associated HIV-1 DNA and that decreasing the initial viral load enables single bNAbs to control viremia in hu-mice.


Assuntos
Antirretrovirais/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por HIV/prevenção & controle , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Imunoterapia/métodos , Animais , Antirretrovirais/farmacologia , Anticorpos Neutralizantes/farmacologia , Primers do DNA/genética , DNA Viral/metabolismo , Dependovirus , Quimioterapia Combinada , Humanos , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Carga Viral/efeitos dos fármacos
18.
Proc Natl Acad Sci U S A ; 108(44): 18044-8, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22025722

RESUMO

Long-term humoral immunity is maintained by the formation of high-affinity class-switched memory B cells and long-lived antibody-secreting plasma cells. In healthy humans, a substantial fraction of IgG-positive memory B cells express self-reactive and polyreactive IgG antibodies that frequently develop by somatic mutations. Whether self- and polyreactive IgG-secreting B cells are also tolerated in the long-lived plasma cell pool is not known. To address this question, we cloned and expressed the Ig genes from 177 IgG-producing bone marrow plasma cells of four healthy donors. All antibodies were highly mutated but the frequency of self- and polyreactive IgG antibodies was significantly lower than that found in circulating memory B cells. The data suggest that in contrast to the development of memory B cells, entry into the bone marrow plasma cell compartment requires previously unappreciated selective regulation by mechanisms that limit the production of self- and polyreactive serum IgG antibodies.


Assuntos
Linfócitos B/imunologia , Células da Medula Óssea/imunologia , Imunoglobulina G/imunologia , Memória Imunológica , Plasmócitos/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Reação em Cadeia da Polimerase
19.
Nature ; 467(7315): 591-5, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20882016

RESUMO

During immune responses, antibodies are selected for their ability to bind to foreign antigens with high affinity, in part by their ability to undergo homotypic bivalent binding. However, this type of binding is not always possible. For example, the small number of gp140 glycoprotein spikes displayed on the surface of the human immunodeficiency virus (HIV) disfavours homotypic bivalent antibody binding. Here we show that during the human antibody response to HIV, somatic mutations that increase antibody affinity also increase breadth and neutralizing potency. Surprisingly, the responding naive and memory B cells produce polyreactive antibodies, which are capable of bivalent heteroligation between one high-affinity anti-HIV-gp140 combining site and a second low-affinity site on another molecular structure on HIV. Although cross-reactivity to self-antigens or polyreactivity is strongly selected against during B-cell development, it is a common serologic feature of certain infections in humans, including HIV, Epstein-Barr virus and hepatitis C virus. Seventy-five per cent of the 134 monoclonal anti-HIV-gp140 antibodies cloned from six patients with high titres of neutralizing antibodies are polyreactive. Despite the low affinity of the polyreactive combining site, heteroligation demonstrably increases the apparent affinity of polyreactive antibodies to HIV.


Assuntos
Afinidade de Anticorpos/imunologia , Reações Antígeno-Anticorpo/imunologia , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Antígenos HIV/imunologia , HIV-1/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos/genética , Reações Antígeno-Anticorpo/genética , Cardiolipinas/imunologia , Linhagem Celular Tumoral , Reações Cruzadas/genética , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Anticorpos Anti-HIV/genética , Antígenos HIV/química , HIV-1/química , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Mutação , Ressonância de Plasmônio de Superfície , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
20.
J Exp Med ; 207(9): 1995-2002, 2010 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-20679402

RESUMO

The identification and characterization of conserved epitopes on the HIV-1 viral spike that are immunogenic in humans and targeted by neutralizing antibodies is an important step in vaccine design. Antibody cloning experiments revealed that 32% of all HIV-neutralizing antibodies expressed by the memory B cells in patients with high titers of broadly neutralizing antibodies recognize one or more "core" epitopes that were not defined. Here, we show that anti-core antibodies recognize a single conserved epitope on the gp120 subunit. Amino acids D474, M475, R476, which are essential for anti-core antibody binding, form an immunodominant triad at the outer domain/inner domain junction of gp120. The mutation of these residues to alanine impairs viral fusion and fitness. Thus, the core epitope, a frequent target of anti-HIV-neutralizing antibodies, including the broadly neutralizing antibody HJ16, is conserved and indispensible for viral infectivity. We conclude that the core epitope should be considered as a target for vaccine design.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Linfócitos B/imunologia , Linhagem Celular , Epitopos/química , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , HIV-1/química , HIV-1/genética , Herpesvirus Humano 4/imunologia , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA